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Smetic- 4 liquid crystals and two-dimensional layered materials are observed to undergo a buckling in-
stability when the system is subjected to dilative strain. In this work, we investigate the properties of the
displacement fields for the buckling system that minimize a continuum free energy appropriate for the
layered system. The key features observed in experiments are reproduced by the minimal-energy solu-
tions, in particular, a transition from a sinusoidal to a chevron buckling profile and the accompanying

increase in the buckling wavelength.

PACS number(s): 64.60.—1, 64.70.—p, 75.70.Kw, 83.70.Jr

Stripe phases are a common pattern of self-
organization in thin magnetic films [1,2] and Langmuir
monolayers [3,4]. Two-dimensional stripe phases are
characterized by a periodic modulation of the order pa-
rameter in one direction. A smectic-4 liquid crystal,
viewed in a direction parallel to one of its layers, can be
regarded as a two-dimensional layered system as well
[5,6]. Both the magnetic films and smectic- 4 liquid crys-
tals, when subjected to dilation in a direction perpendicu-
lar to the layers, give rise to a second modulation of the
order parameter (Fig. 1) in a direction perpendicular to
the original layer modulation [5,7—10]. In other words,
the stripes can ‘“buckle” when they are forced to have a
layer spacing greater than their equilibrium period.

Smectic- 4 liquid crystals have been subjected to dila-
tive strain between two parallel plates with the layers
running parallel to the plates [5,10]. Stripe phases in
magnetic systems are strained by changing either the
temperature or the applied magnetic field in a direction
which tends to decrease the equilibrium stripe spacing
[7-9]. When there is no mechanism for injecting new
stripe layers, the stripes buckle in order to bring the local

dilative
strain

FIG. 1. Schematic representation of a layered material sub-
jected to dilative strain.
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layer spacing closer to equilibrium.

Stripe buckling observed in magnetic systems exhibits
some consistent trends [7—9]. The initial modulation ap-
pears above a certain strain threshold and is sinusoidal.
As the strain increases past the threshold value the stripe
modulation pattern incorporates higher Fourier modes
and takes a zigzag or chevron appearance. Seul and
Wolfe have made particularly revealing observations of
stripe buckling in a ferrimagnetic film [8,9]. They find
that the transition from sinusoidal to chevron buckling
profile is accompanied by a lengthening of the buckling
wavelength. The magnetic system can accomplish this
wavelength increase by ejecting chevrons by a process
analogous to dislocation climb. In this work we find that
all these trends can be described by the standard continu-
um elastic free-energy density appropriate for a two-
dimensional layered material. These trends are repro-
duced when we follow the displacement field that mini-
mizes the continuum free energy as a function of the
strain.

The complicated, long-range interactions that give rise
to stripe phases in diverse materials need not be explicitly
treated if one considers small, long-wavelength fluctua-
tions about a reference stripe phase. In this case the re-
quirement that the energy be unchanged upon undistort-
ed rotation of the stripes places strong constraints on the
form of the continuum elastic free energy [6]:

1 L,2 A b 1([12 2
__—ALZ f_ z/zdzfo dx > WZ_E ot

K
+—Us .
Z%XJ

(1)

The x and z directions are parallel and perpendicular to
the stripes. The system is assumed periodic in the x
direction with period A. The field U (x,z) describes the
displacement of stripes away from their reference posi-
tion in the sample. The system is taken to lie between
perfectly flat walls at z==L, /2. The stripes lie parallel
to the walls at this boundary. Hence %(x,z) must be con-
stant along the lines z==xL, /2,
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The free energy of Eq. (1), originally developed for
liquid crystals, was first applied to magnetic systems by
Sornette [2]. This free-energy density is a sum of layer
compression and splay contributions. The local layer
spacing relative to equilibrium to all orders in ¥ is

[(1+U,)1+2U2) V2= 1]=(U,—192)+ - - - . 3)

Hence the free energy (1) is applicable only when ‘lli and
U, U2 are small. Additional terms could be added to the
free energy to enforce rotational invariance to higher or-
ders or describe more complicated interactions, but we
would not expect these additional terms to change the
qualitative aspects of the behavior we draw from the elas-
tic free-energy density.

The purpose of this work is to explore the nature of
minimal-energy configurations of the displacement field
U(x,z) when the system is subjected to dilation in the z
direction,

U x,z)=az+ulx,z) . 4)

The average displacement at a given z is az, assumed
linear in z, and therefore we specify

fOAdx u(x,z)=0 (5)

and as a consequence of Eq. (2),

=0. (6)

Remarkably, several aspects of the minimal-energy dis-
placement fields can be understood by picturing the oscil-
latory motion of a classical particle in the inverted quar-
tic potential shown in Fig. 2. The Euler equation for
minimization of the continuum free energy of the layered
material will be shown, in several approximate limits, to
be related to Newton’s equation of motion in the inverted
quartic potential. As the energy of the particle rises from
zero to the height of the barriers, the oscillating trajecto-
ry changes from sinusoidal to a square-wave pattern (Fig.
2). The period of oscillation steadily increases with ener-
gy and diverges logarithmically as the energy approaches
the barrier height. Just to give one example, the
minimal-energy buckling pattern turns out to be the time
integral of these trajectories. The segments of the chev-
ron structure with nearly constant slope are associated
with stretches of the classical trajectory where the parti-
cle remains with nearly constant position near the inner
turning points of the inverted quartic potential.

It is certainly an open question as to how closely exper-
imental systems actually track minimum-free-energy
configurations. We cannot discount the possibility that
dynamics plays an important part in the selection of the
buckling pattern. The elucidation of a relatively simple
physical picture of the minimal-energy configurations for
these complex systems will help separate dynamic and en-
ergetic effects. At this stage, we do not find any qualita-
tive features of the stripe buckling experiments that are
inconsistent with a description solely in terms of energet-
ics. However, at the very least, the experimental systems
may not precisely track minimum-free-energy solutions.
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Also, experiments have revealed many steps in pattern
evolution beyond stripe buckling [7-9,11,12] for which
theoretical description, either dynamic or static, is far
from complete. Therefore, we hardly advocate energy
minimization as a universal guide for pattern selection.

We explore various approximations to minimum free
energy displacement fields of the form

U(x,z)=az+d(z)P(x) . (7)

For want of better terms, we call ¢(z) the amplitude
profile and ¥(x) the buckling profile. Instability of the
displacement field with respect to buckling into “‘single-
mode” profiles,

u(x,z)xcos(q,z)cos(g,x) , (8)

q,=mw/L,, q, =2m/A, has been analyzed previously [2,5].
The generalization to full two-dimensional modulation of
smectic layers has been given by Delrieu [13]. Since we
find that the minimum-energy configuration evolves con-
tinuously from unbuckled to buckled and that the solu-
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FIG. 2. An inverted quartic potential of the form that con-
trols minimal-energy configurations of the displacement field.
Two typical trajectories are shown for a classical particle oscil-
lating in the well of this potential. The lower-amplitude trajec-
tory is nearly harmonic. The higher-amplitude trajectory is that
of a classical particle with total energy near the barrier height of
the potential. The higher-energy particle spends long stretches
lingering near the top of the barrier, with consequently longer
periods of motion than in the harmonic case.
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tions to the Euler equations have a single Fourier mode
at threshold, the threshold for minimum-energy solutions
turns out to be identical to the previously derived insta-
bility threshold [5].

In the following section we first relax the single-mode
constraint on ¢(z), keeping the buckling profile propor-
tional to cos(g,x). This approximation is sufficient to
show how ¢(z) develops from a single Fourier mode near
threshold to a nearly constant function with minor edge
effects as the system is pushed passed threshold. Next we
explore the behavior of u(x,z) in another limit, near the
center of the system at z=~0. Except for very small sys-
tems, z derivatives of u(x,z) should be small near the sys-
tem center and equations for the buckling profile can be
solved in this “bulk” limit. This second limit shows how
the initial sinusoidal buckling profile evolves into a chev-
ron or zigzag shape, increasing the modulation period
during this evolution. Finally in Sec. III the two limiting
cases are combined to give an approximate solution to
the full displacement field.

I. MINIMAL-ENERGY AMPLITUDE PROFILE
Upon substitution of a displacement field of the form
U(x,z)=az+¢(z)cos(g,x) 9)
into Eq. (1), a continuum free energy in terms of ¢(z) and
g, is obtained:

2 L_/2
_ b 1 z 1 2 4\ 12
f=- 3 : f-Lz/zdz[z(-aqu +Kq)d

b 3b
+—¢2+—qgid* .
4¢z+64qx¢ ] (10)

The boundary condition (6) forces

4z
-2

¢ =0. (11)

The Euler equation satisfied by the amplitude profile ¢(z)
which extremizes equation (10) subject to boundary con-
ditions is

b= —aqf+—§—q;‘ ¢+3igid’ (12)
__ 9
=559 (13)
where
=1 2_5 4 |42 3 444
0($)=7 |agy — g |$° 59x4" - (14)

This is the classical equation of motion for a particle of
unit mass in the inverted quartic potential v(¢$). The time
variable of the analogous classical motion corresponds to
z in the stripe buckling problem. According to boundary
conditions, we seek a trajectory that begins at ¢ =0 at the
“time” —L,/2 and returns to ¢=0 at the later “time”
+L, /2. Oscillatory motion of this type will not be possi-
ble unless v(¢) exhibits a well near ¢ =0 and hence
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a— 5q3 >0. (15)
b
This is the condition for solutions to the Euler equation
[other than the unbuckled solution ¢(x)=0] to exist un-
der any conditions. The conditions for solutions to exist
for a specified value of system size L, will be seen to be
more restrictive.

Remarkably, the amplitude profile is not the only
phenomenon related to stripe buckling that we find
linked to analogous classical motion in an inverted quar-
tic potential. It is convenient at this point to introduce a
scaling of variables so that we may discuss several
features in terms of a standard set of solutions to
Newton’s equations in a quartic potential. The required
trajectories in this potential are parametrized by a single
variable which we take to be €, the energy divided by the
peak energy of the potential. The generic equation of
motion

d2r _ d 2 4
mﬁ——y[%Ar —Br?] (16)
is reduced by the transformations
"y 172 172
114 =9 |
r(t)= > |3 pls), t=2 y, s (17)

to a standard form

2
_‘_i_f_ = _Q._ 2p2—pt (18)
452 P [2p°—p"] .
We chose the potential in the form 2p*—p* because the
peaks occur at p ==*1 and the magnitude of the potential
at these points is unity, thereby setting a convenient ener-
gy scale in scaled coordinates so that the scaled energy
variable

i 2

CL | 42p2—p* (19)

=1
2 | ds

describes oscillatory motion in the range 0<e<1. (The
inconvenient feature of this choice of potential is that the
coefficient of the quadratic term is not the traditional 1.)
In terms of solutions p(s|e) to the scaled equations, the
original equation of motion (16) for a particle with energy
E has solution given by the transformation of Eq. (17)
with

A 2
16B

The time of a complete period of motion in scaled coordi-
nates is 7(€),

ne)=4f )
When e<<1,7(e)=~m. As € approaches unity 7(€)
diverges logarithmically. The period of motion in terms
of the parameters of the generic equation of motion (16)
is2Vm/ A 1(e).

Most of the quantities needed for subsequent analysis
can be expressed in terms of special functions. The
derivation follows from standard classical mechanics in

E= (20)

VIV
Y b 20e—2p24ph 2. D)
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one dimension and we only quote results here. The tra-
jectory p(s|e) is given implicitly as

1 -
s=————F|0|— |, (22)
V2%, &+
where
ti=1+V1—e (23)
and
sing= —2— (24)

Ve

and F(8|m) is the elliptic integral of the first kind [14].
The inner and outer turning points are p, =1/¢,. The
boundary condition p(0l€)=0 is implicit in (22). The
period of the motion is obtained from Eq. (22),

1/2
2 =
o | Xla

where K(m) is the complete elliptic integral of the first
kind [14]. Later we will use the average of several quanti-
ties over a period of the classical motion. These averages,
all given in terms of the hypergeometric function
Ha,b,c,x) [14,15], are indicated with angular brackets
in the following expressions:

T(€)=2 , (25)

<p2>e=ﬁﬁ&7 %%25—; : (26)
<p4>e=z% %%3% , 27
(b= [T apVale=27 ] 28)

SV 1 1n 6 @)

The subscript € is placed on these averages as a reminder
that they are functions of only one variable €.

We now return to the analysis of the amplitude profile,
which is the analogous trajectory generated by Eqgs.
(12)-(14) over a half-period of the motion. The half-
period of the classical trajectory corresponds to the sys-
tem dimension L,,

7(€,) —i2

9x

a2 0
z a qu (3)

The half-period in the limit of low-energy trajectories
can, of course, be read from the coefficients of ¢,, and ¢
in Eq. (12) or obtained by the limit 7(€,)— 7 in the above
expression. The half-period for the inverted quartic po-
tential lengthens as the energy increases and diverges log-
arithmically as the energy nears the maxima of v(g).
Therefore the harmonic limit is a lower limit for the
half-period, and it gives a lower bound on values of L, for
which solutions to the Euler equations exist,
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—1/2

o
>
L,>
X

a——q? (31)

b

The stripe modulation wave vector g, that yields the
shortest period of the analogous classical motion (and is
able to satisfy the above inequality down to the smallest
possible L,) is

172

ab

2K (32)

9=

for which the half-period is (27 /a)V'K /b. Translating
Egs. (31) and (32) into a threshold condition on a for non-
trivial solutions to the Euler equation, we find the thresh-
old dilation under these conditions to be
1/2
wr [k ]

> =7
=T

b (33)

z

This is the same threshold found by Clark and Meyer [5]
based on a stability analysis. Under the constraints im-
posed on the displacement field given in Eq. (9),
minimal-energy solutions first appear at the point when
the system first becomes unstable. At this level of ap-
proximation, buckling may be pictured as continuous in
the sense of a continuous phase transition. Ribotta and
Durand have experimentally confirmed the threshold cri-
terion (33) for smectic- 4 liquid crystals [10].

The amplitude profile ¢(z) of the displacement field
only contains one Fourier mode in the limit of small ener-
gy E, of the analogous classical trajectory,

b
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FIG. 3. Amplitude of a single buckling mode cos(g,x) as a
function of the coordinate z which runs perpendicular to the
stripes or smectic layers from z=—L, /2 to L, /2. These ampli-
tude profiles are parametrized by a single variable 0<e<1. As
explained in Sec. I of the text, small-€ solutions describe samples
with small L,, while the infinite system limit corresponds to
€—1. The profiles are normalized to ¢.,, [Eq. (35)], the max-
imum amplitude possible for a given combination of strain a,
buckling wave vector g, and penetration length V'K /b in an
infinite system.
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2

E €, , (34)

— 2
z a x

=2
3 q

K
b

where we have parametrized the energy in terms of the
dimensionless quantity €, according to Eq. (20). When a
rises from its threshold value, a quantity which scales as
~L; ! according to Eq. (33), to typical experimental
values of, say, 0.1 or 0.2, €, begins to increase. When ¢,
is sufficiently large so that the motion samples anharmon-
ic regions of the potential, the single-mode description of
the amplitude profile no longer applies to minimal energy
solutions. Several amplitude profiles for various values of
€, are shown in Fig. 3. In the limit of €, near unity,
which corresponds to very large z dimension L, of a sys-
tem past threshold, the analogous classical particle
spends most of the time lingering near the peak of v(¢)
which occurs at

12
8

3g2

K >

¢max: a_qu (35)

b max 18 the amplitude of the single-mode buckling func-
tion cos(g,x) throughout most of the sample in the limit
of large L,. Edge effects in Fig. 3 are described by the
small part of the analogous classical trajectory (Fig. 2)
that is spent near the bottom of the well of v(¢).

As the dilation a is driven past threshold, the modula-
tion wave vector of the buckling profile is observed to de-
crease experimentally [8,9]. This is not properly de-
scribed with a single-mode buckling function
[u(x,z)=<cos(g,x)]. With a single amplitude and buck-
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FIG. 4. The minimum free energy and energetically optimal
buckling wavelength A, calculated for stripe buckling restricted
to a single mode cos(g,x), is plotted against the dilative strain a
as the strain is increased from its threshold value, 0.025 133.
Parameters chosen for this calculation are system size L, =500
and penetration length V'K /b =2. The actual units of length
are irrelevant (um would make these quantities typical of mag-
netic systems) since all lengths can be scaled to a particular one,
for example, they can be measured in units of the penetration
length V'K /b. The free energy is given in the dimensionless
combination f /b with the energy of the system before buckling
a?/2 subtracted out. i
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ling mode, the type of continuum free energy considered
in the past [2,5] the modulation wave vector g, which
minimizes the free energy does not change as a increases
past its threshold value [16]. The picture does not im-
prove with the amplitude profile given by the more flexi-
ble solution ¢(z) to (12), but the buckling profile still pro-
portional to cos(g,x). Standard manipulations in the
theory of action integrals in classical mechanics, used, for
example, in Eq. (28), allow us to transform the free ener-
gy into the form

2

1 2y
; T a5 | KpDe—el. GO

2
a 1 K
f——7+—- ta————qf

When minimizing the above expression with respect to
4., €, must be regarded a function of g, through relation
(30). When this minimization is carried out, we find that
the energetically favorable g, actually increases as the
system is driven past threshold, as shown for a sample set
of parameters in Fig. 4. This trend is opposite to the de-
crease in modulation wave vector past threshold observed
experimentally [8,9]. In the next two sections, we do find
agreement with the experimental trend once the single
buckling mode restriction is relaxed.

II. BULK BUCKLING PROFILE

Minimal-energy displacement fields in the presence of
dilative strain a satisfy the Euler equation
K
_uzz+[a_%u3]uxx+_b.uxxxx=0 ’ (37
where u(x,z) is the excess displacement field defined in
Eq. (4). In regions of the sample where u,, can be
neglected in comparison with the other terms, the full

Euler equation reduces to a more tractable ordinary
differential equation,

K
[a_%l—ileﬁxx_*_—b—ﬁxxxxzo ’ (38)

where % (x) is the “bulk” buckling profile applicable for
large L, far from system boundaries. In the single-mode
case explored in Sec. I, u,, ~L, 2 near threshold and, ex-
cept for the edges of the sample, further decreases as the
strain surpasses the threshold value.

Equation (38) is simplified by the substitution

wx)=u,(x,z) (39)

and recognizing that it indicates a conserved quantity

K d K 1
[a—3w?w, + T Waxx = - |AW + S Wex 3w3 =0.
(40)
The quantity in curly brackets must be a constant,
aw+Ew  —ipd=y=
o ¥ =const. 41)

b

Periodic boundary conditions force the constant ¥ to be
zero, as shown below.
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Equation (41) is another classical equation of motion
for a particle of mass K /b in an inverted quartic poten-
tial,

a

5 w?—1lw*. (42)

—yw+
We will search for periodic buckling profiles #, and hence
w must also have the same period. Because #(x) is
periodic

Z(x +A)—a(x)=0= [ dx'w(x") 43)

the average value of w must vanish. Since the rest of the
potential is symmetric in w, this is only possible if y =0,
leaving the final “equation of motion” for the derivative
function w,

K, __3

b Wer = awv(w) , (44)
where

v(w)=%w2—%w4. (45)

In terms of solutions p(s|e) to the scaled equation of
motion (18), we find

172
ab
——x le,

w(x)=\/ﬂp K

) , (46)

where €, is a single-parameter index to these solutions
which ranges from O to 1. For small values of ¢, the func-
tion p(s|e)=V'e/2cos(2s). Hence the Euler equation
(38) first has solutions when g;=ab /K. This does not
contradict Eq. (32) because the approximate buckling
profiles discussed in this section are essentially an infinite
L, limit. In fact, the threshold for solutions to Eq. (46) is
in agreement with condition (31) in the limit of L, — o0.

Solutions to Eqgs. (44) and (45) for various values of the
index €, are shown in Fig. 5. The buckling profile #(x) is
nearly sinusoidal for small € and tends toward a chevron
or zigzag shape as €, approaches unity. The nearly-
straight-line segments of the chevron shape of #(x) arise
from time segments of nearly constant derivative in w(x)
as the analogous classical particle lingers near the peaks
of the potential in Eq. (45). As the buckling profile more
closely approaches a pure chevron, the slope of the
profile along the nearly-straight-line segments of the
chevron tends toward

i, (x)=w(x)=V2a,

x E(chevron straight-line segment) .  (47)

This relation describes the tendency of the chevron
stripes to seek the equilibrium spacing of the unstrained
system. Referring back to the full order expression for
the compression in Eq. (3), we see that the layers are at
their equilibrium spacing (and merely rotated) when

U, =V"2U,+ U, (48)

that is, when
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u,=V2a+a*. (49)

Equation (47) is now recognized to contain the leading-
order term in the condition (49) for zero net compression
along chevron stripe. The estimate (47) for u, would be
increased slightly by retaining higher-order terms in (49).
Again, we are reminded that the continuum free energy
(1) is only valid for small values of the derivatives.

This dimensionless quantity u, furnishes a convenient
way to estimate parameters of the quartic potential from
experimental data. Seul and Wolfe recently measured the
slope of chevron stripes in thin ferrimagnetic films [8,9].
They reported a value of u, ~0.71 when a~0.2. The
condition of zero net compression (49) predicts that
u, =0.66 for the reported value of a, in rather good ac-
cord with experiment [8,9]. The lower-order estimate for
u, (47) that we would obtain from continuum elastic
theory is 0.63. Several factors could affect this compar-
ison with experiments. The experimental system could be
slightly out of the metastable equilibrium defined by our
solutions to Euler equations. Alternatively, terms higher
than quartic in the free energy may have a quantitative
effect. In general, the maxima of the potential v(w) in
Eq. (45) should match limiting slope u, of the chevrons,
and this slope should approximate Eq. (49).

The wavelength of the bucking instability A is given by
2V K /ab 7( €,), where the function 7(€) is the function

1
0.5
w/V2a
0
-0.5
1
2 i 8 10
Vab/K(z/2)
2
1
NG
v
2

Vab/K(x/2)

FIG. 5. Bulk buckling profile # (lower panel) and its deriva-
tive w(x) (upper panel) calculated for €, =0.1, 0.9, and 1—107°.
In both plots the amplitude increases with increasing €,. The
functions and their arguments are scaled so that the curves only
depend on €,, and the dependence on the strain a and penetra-
tion depth V'K /b is explicit.
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defined in Eq. (21). It rises steeply as €, approaches uni-
ty. In agreement with recent experiments [8,9], we find
that the transition from sinusoidal to chevron buckling
profile is accompanied by an increase in the buckling
wavelength A. This is a generic feature which arises
when the energy of the analogous classical trajectory ap-
proaches the maxima in v(w) [Eq. (45)].

The important feature to emerge from the calculations
of this section is that the transition to chevron shape and
increase of the modulation wavelength A are part of the
same effect, which can be interpreted by physical analogy
with the analogous classical particle lingering near the
maxima of the inverted quartic potential v(w). The ten-
dency of A to increase should remain even if higher-order
terms are added to the continuum free energy. One thing
missing from the bulk limit explored in this section is
wavelength selection. In fact, the free-energy density in
the bulk is monotonically lowered as the buckling profiles
7 (x) evolve to the extreme chevron limit, €, — 1, even for
small a. This is not surprising since the system is in
effect discovering ever larger patches of unstrained, un-
buckled stripe domains of size A in this limit. This driv-
ing force offers a physical explanation for the increase in
buckling wavelength past threshold and why retaining
just a single Fourier mode in the buckling profile fails to
capture this effect. Wavelength selection on the basis of
energetics is discussed in the following section.

III. APPROXIMATION
TO THE FULL DISPLACEMENT FIELD

Our final approximation to the full displacement field is
an attempt to combine the competing effects described in
the first two sections, the suppression of high-order
Fourier components of the buckling profile by the bound-
ary conditions (2) and growth of the high-order modes in
the form of long-wavelength chevron stripes to recapture
the equilibrium layer spacing. We approximate the full
displacement field by one of the form

‘&l(x,z)=az+¢(z)fxdx’p(%qxx"ex) , (50)

where p(s|e) is defined in Egs. (18) and (22)-(24). Under
the ansatz of Eq. (50), the free parameters for optimiza-
tion of the continuum free energy (1) are the amplitude
profile ¢(z), the parameter €, which controls the shape of
the buckling profile (sinusoidal or chevron), and gq,,
which gives additional flexibility to the buckling wave-
length. The constant of integration in (50) is chosen to
satisfy (5). The actual modulation wavelength of the
buckled stripes is

_ 27(e,)

9x

(51)

The usual meaning of g, as a Fourier wave vector is only
recovered in the limit of small €
limEX _027(€,) /g, =2m/q,.

Substituting the approximate displacement field (50)
into the continuum free energy (1), we obtain
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2
_a
4 2

1 L,/2 2 2
+L_zf*Lz/2dZ lq—)%( [fp] >ex¢§

1
b

Kq?

+
8b

— L, o), ]¢2

+%<p4)€x¢4] . (52)

After optimization with respect to ¢(z) and again using
manipulations from the theory of classical mechanical ac-
tion integrals [analogous to the derivation of Eq. (36)],
the free energy reduces to

Kq? 2
25 P,

1 2
alp?), —
2 2(1)4)6)c Ple

X[{pide, —e€.]- (53)
The parameter €, which controls the sharpness of the
amplitude profile ¢(z) is fixed by the relation between the

half-period for motion of the analogous classical problem
for ¢(z) and the system dimension L,,

Ka? 1/2
1 2 qx 2
T ~ 12\ a<p >ex_—ZE_<Ps >ex qXLZ
{[Jo])e
=1(€,)
(54)
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FIG. 6. The minimum value of the free-energy function in
Eq. (53) with respect to g, is shown (solid line) as a function of
€, for «=0.0252, which is just above the threshold strain
a=0.025133 for the chosen parameters L,=500 and
VK /b =2. (See the discussion of units of length in the caption
to Fig. 4.) The plot shows that the optimal €, occurs near zero,
and hence the buckling profile is sinusoidal near threshold. The
dashed line is a plot of the optimal modulation wavelength
[defined in Eq. (51)] as a function of €,. The buckling modula-
tion wavelength A is nearly constant for €, in this range, and
the global minimum occurs at A=112.1, indicated by an arrow
on the right axis in the figure.
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FIG. 7. The minimum value of the free-energy function in
Eq. (53) with respect to g, is shown (solid line) as a function of
€, for a=0.1 for the chosen parameters L,=500 and
V'K /b =2. In contrast to the single-mode results shown in Fig.
4, the optimal €, =0.9997, and hence the buckling profile, has
more chevron than sinusoidal character. The dashed line is a
plot of the optimal modulation wavelength [defined in Eq. (51)]
as a function of €,. The global minimum occurs at A=113.7,
indicated by an arrow on the right axis in the figure, slightly
larger than the wavelength near threshold. Note that the less
optimal single solutions (€, ~0) have wavelength smaller than
the threshold wavelength.

Since the right-hand side of this equation must be greater
than or equal to , this furnishes threshold conditions for
buckling. These are easily shown in a small-¢, expansion
to be identical to the single-mode threshold conditions
(32) and (33). In other words, we find that both €, and €,
tend to zero at threshold and that only one Fourier mode
is active in either the amplitude profile or buckling profile
at threshold.
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FIG. 8. The minimum value of the free-energy function in
Eq. (53) with respect to g, is shown (solid line) as a function of
e, for a=0.2 for the chosen parameters L,=500 and
V'K /b =2. The optimal €,=0.999999 8, and hence the buck-
ling profile has strong chevron character. The dashed line is a
plot of the optimal modulation wavelength [defined in Eq. (51)]
as a function of €,. The global minimum occurs at A=123.4,
indicated by an arrow on the right axis in the figure, roughly
10% larger than the wavelength near threshold. Note that the
less optimal single solutions (e, =0) have wavelength smaller
than the threshold wavelength.
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Past threshold, Eq. (54) can be satisfied by a finite
range of parameters. Numerical minimization [15] of the
free energy (53) with respect to g, leaves a function of
just €, whose characteristic are shown in Figs. 6-8. The
global minimum of the approximate free energy (53) is, of
course, the minimum of the curves in Figs. 6—8 with
respect to €,. However, it is instructive to look at the
properties of the system optimized over all parameters
except €,, which has the meaning of sifting through a
family of buckling profiles ranging from pure sinusoidal
(e,—0) to pure chevron (e,—1). In Figs. 6-8 we see
that the optimum value of €, quickly shifts toward unity
as a passes the threshold value. We also see that the
buckling wavelength (51) of the optimal solutions (indi-
cated with an arrow on the right axis in the figures) in-
creases with a, even though the optimal wavelength of
solutions with €, forced to be zero has the opposite, and
incorrect, trend.

IV. DISCUSSION

Buckling undulations in dilated layered materials are
controlled by two competing effects. Stripe buckling
brings the layers closer together, thereby undoing the
effects of the applied strain. The system can essentially
recover its unstrained configuration without injecting
new layers by forming zigzags or chevrons of macroscop-
ic size. Without a boundary condition, long-wavelength,
large-amplitude chevrons would be the lowest-energy
response to dilative strain, even for very small strain.
However, larger-amplitude chevron undulations are in-
consistent with boundary conditions in which the layers
lay flat at the system boundary. Layer undulation must
tend toward zero at the boundaries at a sufficiently
moderate rate so that large local compression is avoided.
We have solved for approximate minimum energy dis-
placement fields that describe this competition.

We have only described the initial steps in the response
of a stripe phase to dilative strain. Experiments on smec-
tic liquid crystals and magnetic materials show that past
another strain threshold, the buckled stripes are unstable
with respect to formation of topological defects
[7-9,17-19]. Careful observation of the onset of topo-
logical defects has shown surprising regularity: Smectic
liquid crystals develop an array of parabolic focal conic
defects [17,18]. Magnetic films seem to support a lattice
of disclination dipoles [8,9,19]. While the origin of topo-
logical defects is beyond the scope of this work, it is at
least encouraging that some measure of qualitative and
quantitative understanding can be brought to the early
stages that lead to the proliferation of topological defects.
To gain this understanding, it is essential to look beyond
single-Fourier-mode descriptions of the buckling pat-
terns.
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